Skip to content

  • Home
    • Featured Questions
    • Latest Updates
  • Subjects
    • Mathematics
    • Science
    • Computers
    • English
    • General Knowledge
    • History
  • Tips & Strategies
    • Test taking strategy
    • Stress Management
    • Time Management
  • Tools & Utilities
    • Generate Speech From Text
    • Change Your Voice
    • Generate Image From Text
    • Compress Your Images
  • Contact
    • Privacy Policy
    • Mission & Vision
  • Toggle search form

LeetCode Hard – Palindrome Partitioning II

Posted on February 10, 2024February 10, 2024 By allexamprep.com No Comments on LeetCode Hard – Palindrome Partitioning II

Given a string s, partition s such that every 

substring of the partition is a 

palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

Example 1:

Input: s = “aab”

Output: 1

Explanation: The palindrome partitioning [“aa”,”b”] could be produced using 1 cut.

Example 2:

Input: s = “a”

Output: 0

Example 3:

Input: s = “ab”

Output: 1

Constraints:

  • 1 <= s.length <= 2000
  • s consists of lowercase English letters only.

Java Solution

To solve this problem, you can use dynamic programming to find the minimum cuts needed for a palindrome partitioning of the string s. The idea is to create a table to store information about whether each substring is a palindrome, and then use this information to determine the minimum cuts.

Here’s the Java solution:

public class PalindromePartitioningII {
    public int minCut(String s) {
        int n = s.length();
        boolean[][] isPalindrome = new boolean[n][n];

        // Initialize the table for palindrome checking
        for (int len = 1; len <= n; len++) {
            for (int i = 0; i + len - 1 < n; i++) {
                int j = i + len - 1;
                isPalindrome[i][j] = s.charAt(i) == s.charAt(j) && (len <= 2 || isPalindrome[i + 1][j - 1]);
            }
        }

        int[] dp = new int[n];
        for (int i = 0; i < n; i++) {
            dp[i] = i;  // Worst case: one cut for each character
        }

        for (int i = 1; i < n; i++) {
            for (int j = i; j >= 0; j--) {
                if (isPalindrome[j][i]) {
                    dp[i] = (j == 0) ? 0 : Math.min(dp[i], dp[j - 1] + 1);
                }
            }
        }

        return dp[n - 1];
    }

    public static void main(String[] args) {
        PalindromePartitioningII solution = new PalindromePartitioningII();

        // Example 1
        String s1 = "aab";
        System.out.println(solution.minCut(s1));  // Output: 1

        // Example 2
        String s2 = "a";
        System.out.println(solution.minCut(s2));  // Output: 0

        // Example 3
        String s3 = "ab";
        System.out.println(solution.minCut(s3));  // Output: 1
    }
}

This Java code defines a PalindromePartitioningII class with the minCut method, which uses dynamic programming to find the minimum cuts needed for a palindrome partitioning of the input string s. The provided test cases demonstrate its usage.

Python Solution

Here’s the equivalent Python solution for finding the minimum cuts needed for a palindrome partitioning:

class PalindromePartitioningII:
    def minCut(self, s: str) -> int:
        n = len(s)
        is_palindrome = [[False] * n for _ in range(n)]

        # Initialize the table for palindrome checking
        for length in range(1, n + 1):
            for i in range(n - length + 1):
                j = i + length - 1
                is_palindrome[i][j] = s[i] == s[j] and (length <= 2 or is_palindrome[i + 1][j - 1])

        dp = [i for i in range(n)]

        for i in range(1, n):
            for j in range(i, -1, -1):
                if is_palindrome[j][i]:
                    dp[i] = 0 if j == 0 else min(dp[i], dp[j - 1] + 1)

        return dp[n - 1]

# Test cases
solution = PalindromePartitioningII()

# Example 1
s1 = "aab"
print(solution.minCut(s1))  # Output: 1

# Example 2
s2 = "a"
print(solution.minCut(s2))  # Output: 0

# Example 3
s3 = "ab"
print(solution.minCut(s3))  # Output: 1

This Python code defines a PalindromePartitioningII class with the minCut method, which uses dynamic programming to find the minimum cuts needed for a palindrome partitioning of the input string s. The provided test cases demonstrate its usage.

LEETCode Tags:LeetCode Hard

Post navigation

Previous Post: LeetCode Hard – Word Ladder
Next Post: LeetCode Hard –  Candy

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Seminar Topic: “Adversarial Machine Learning: Challenges, Defense Mechanisms, and Real-World Implications”
  • Title: Exploring Explainable Artificial Intelligence (XAI) in Deep Learning
  • Project: Simple Weather App with OpenWeatherMap API
  • Project: Web Scraping Quotes with BeautifulSoup
  • Project: Automated Document Summarization with Gensim

Recent Comments

  1. Mystic Knightt on How to get generated id in spring batch template insert
  2. Sachin on How to get generated id in spring batch template insert

Archives

  • February 2024
  • January 2024

Categories

  • Biology
  • Blog
  • Computer QnA
  • LEETCode
  • Projects
  • Privacy Policy
  • Terms Of Service
  • Contact
  • About Us

Copyright © 2025 .

AllExamPrep