Skip to content

  • Home
    • Featured Questions
    • Latest Updates
  • Subjects
    • Mathematics
    • Science
    • Computers
    • English
    • General Knowledge
    • History
  • Tips & Strategies
    • Test taking strategy
    • Stress Management
    • Time Management
  • Tools & Utilities
    • Generate Speech From Text
    • Change Your Voice
    • Generate Image From Text
    • Compress Your Images
  • Contact
    • Privacy Policy
    • Mission & Vision
  • Toggle search form

Project: Text Generation with RNN using TensorFlow and Keras

Posted on February 10, 2024 By allexamprep.com No Comments on Project: Text Generation with RNN using TensorFlow and Keras

Let’s create a project for text generation using Recurrent Neural Networks (RNNs) with Python, TensorFlow, and Keras. In this example, we’ll generate text in a similar style to a given input text.

1. Project Setup:

  • Create a new Python project or script.
  • Install necessary libraries:
pip install tensorflow numpy

2. Data Loading:

  • Choose a text dataset for training. For this example, we’ll use the Shakespeare dataset:
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import requests

# Download the Shakespeare dataset
url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
text = requests.get(url).text

3. Text Preprocessing:

  • Tokenize and preprocess the text data:
# Tokenize the text
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
total_words = len(tokenizer.word_index) + 1

# Create input sequences and labels
input_sequences = []
for line in text.split('\n'):
    token_list = tokenizer.texts_to_sequences([line])[0]
    for i in range(1, len(token_list)):
        n_gram_sequence = token_list[:i+1]
        input_sequences.append(n_gram_sequence)

# Pad sequences for equal length
max_sequence_length = max([len(seq) for seq in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')

4. Model Definition:

  • Define a simple Recurrent Neural Network (RNN) using TensorFlow and Keras:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense

model = Sequential()
model.add(Embedding(total_words, 100, input_length=max_sequence_length - 1))
model.add(LSTM(100))
model.add(Dense(total_words, activation='softmax'))

5. Model Compilation:

  • Compile the model, specifying the loss function, optimizer, and metrics:
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

6. Model Training:

  • Train the RNN model on the text data:
from tensorflow.keras.utils import to_categorical

X, y = input_sequences[:, :-1], input_sequences[:, -1]
y = to_categorical(y, num_classes=total_words)

model.fit(X, y, epochs=10, verbose=1)

7. Text Generation:

  • Use the trained model to generate new text:
seed_text = "To be or not to be"
next_words = 100

for _ in range(next_words):
    token_list = tokenizer.texts_to_sequences([seed_text])[0]
    token_list = pad_sequences([token_list], maxlen=max_sequence_length - 1, padding='pre')
    predicted = model.predict_classes(token_list, verbose=0)
    output_word = ""
    for word, index in tokenizer.word_index.items():
        if index == predicted:
            output_word = word
            break
    seed_text += " " + output_word

print(seed_text)

8. Project Conclusion:

  • Summarize the project’s goals, outcomes, and potential improvements.
  • Include any insights gained from analyzing the generated text.

This project provides a basic example of text generation using an RNN. You can experiment with different architectures, hyperparameter tuning, and datasets for more creative and complex text generation tasks.

Projects Tags:project

Post navigation

Previous Post: Project: Image Classification with CNN using TensorFlow and Keras
Next Post: Project: Facial Expression Recognition with CNN using TensorFlow and Keras

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Seminar Topic: “Adversarial Machine Learning: Challenges, Defense Mechanisms, and Real-World Implications”
  • Title: Exploring Explainable Artificial Intelligence (XAI) in Deep Learning
  • Project: Simple Weather App with OpenWeatherMap API
  • Project: Web Scraping Quotes with BeautifulSoup
  • Project: Automated Document Summarization with Gensim

Recent Comments

  1. Mystic Knightt on How to get generated id in spring batch template insert
  2. Sachin on How to get generated id in spring batch template insert

Archives

  • February 2024
  • January 2024

Categories

  • Biology
  • Blog
  • Computer QnA
  • LEETCode
  • Projects
  • Privacy Policy
  • Terms Of Service
  • Contact
  • About Us

Copyright © 2025 .

AllExamPrep